Annals of Self-Experimentation: How to Fall Asleep Faster

Evan Dumas, our self-experimenter, does IT support in Portland, Oregon. He is 26 years old. As far back as he can remember, he has had trouble falling asleep. After he went to bed and turned off the light, it take an hour or more to fall asleep.

About a year ago, he tried a new solution: exercise just before bedtime. He had noticed that he fell asleep more quickly when he was tired (and of course exercise was tiring); and it was hard to exercise earlier in the day. He wondered if the standard advice don’t exercise close to bedtime was true. (For example, “finish your exercise at least three hours before bedtime,” says the National Sleep Foundation.)

His exercise consisted of slow push-ups, crunch-style sit-ups, and some static yoga positions that use the side muscles and back muscles. He continued until he was tired. In the beginning this took about 10 minutes; now it takes about 20 minutes.

The very first night he tried this, he fell asleep within minutes. Same with later nights: After exercise, he fell asleep “instantaneously,” he says — by which he means within about 5 minutes. Any doubt it was cause and effect was removed by evenings when he omitted the exercise, just to see if it was necessary. Without exercise, it again took him more than an hour to fall asleep. He also noticed that the exercise caused him to sleep less and wake up feeling more rested.

A great discovery. Surely we need far fewer sleeping pills.

To repeat what I said earlier: If you are interested in doing any self-experimentation, feel free to contact me for help. Also, please let me know the results; I would like to publicize other people’s self-experiments in this blog.

Is Drinking Olive Oil Healthy?

In Cities and the Wealth of Nations, Jane Jacobs wrote about an isolated North Carolina hamlet that her aunt visited in 1923:

One of my aunt’s tasks there was to see to construction of a church. . . One of the farmers donated, as a site, a beautiful knoll beside the river and my aunt suggested the building be made of fine large stones which were already quarried, as it were, needing little dressing, there for the taking in the creek and river beds. No, said the community elders, it was a pretty idea but not possible. . . . Entire walls and buildings of stone would not be safe.

These people came of a parent culture that had not only reared stone parish churches from time immemorial, but great cathedrals.

Likewise, nutritional wisdom is forgotten. Drinking olive oil now seems absurd to some people. But it was practiced in at least one place in the not-so-distant past:

In a mountain village in Crete, [Ancel] Keys saw old farmers working in the field who drank only a glass of olive oil for breakfast; he later verified that one of them was 106 years old.

From Todd Tucker, The Great Starvation Experiment, p. 204. There is a whole organization (Oldways) devoted to preserving ancient foodways and using them for nutritional guidance. The best practitioner of this approach has been Dr. Weston Price, a dentist, whose work is nicely summarized here. Dr. Price traveled the world looking for economically-primitive societies (“native peoples”) with ancient eating habits and excellent health. Their diets, especially the common elements, would suggest what a healthy diet must have.

Two of Dr. Price’s conclusions are relevant to the Shangri-La Diet:

1. “All native peoples studied made great efforts to obtain seafood.” This supports my comments about the importance of omega-3 fats, found much more in seafood than in other foods.

2. “The last major feature of native diets that Price found was that they were rich in fat, especially animal fat.” The animal fat in native diets would be high in omega-3 because the animals were eating grasses and other plants, not corn.

When I wrote my long paper on self-experimentation I divided it into two parts: one titled “Stone-Age Life Suits Us” (the common thread of the five examples), the other about weight control (the research behind SLD). The two parts struck me as quite different. Drinking sugar water to lose weight was definitely not a return to a Stone-Age lifestyle. But the big improvements in SLD since I wrote that paper — from sugar water to ELOO, and from ELOO to oils high in omega-3 — brought SLD much closer to the Stone-Age-Life-Suits-Us theme, I now see.

Going Flavorless

Gary Skaleski, the Wisconsin counselor who came up with nose-clipping (= eating food with your nose closed, especially with a swimmer’s nose clip), has tried eating all his food that way:

The last time I wrote to you I had started gaining again and not following the SLD as I should have been (off and on). However, since then I have been eating everything, all day long, without tasting anything (even coffee, diet soda)-avoiding [flavor] completely, but eating well. After a couple of days, the appetite suppression came back with a vengeance and am losing again.

What was the most interesting was the difficulty I had starting this, and the sense of loss/regret and avoidance I had to doing it, and not being able to [smell] anything. While I recommended this procedure for others, I avoided it myself. But now I am on day 3 of [flavorlessness] and am doing well. . . . Interesting new needs come up-need for something crunchy, something smooth tasting, etc. . . . does help one focus on the feeling of different foods while eating, as well as becoming more sensitive to real hunger feelings (amazed at how much taste runs one’s eating).

He believes, as do I, that this may be useful in extreme cases. Let’s compare gastric bypass surgery (GSB) and eating like this (NC, for nose-clipping) on several dimensions. Dangerous? GSB: very. NC: no. Reversible? GSB: no. NC: yes. Adjustable? GSB: no. NC: very. You can do it every other day, for example. You can nose-clip some foods but not others. Cost? GSB: $20,000 or more. NC: $5 (swimmer’s nose clips).

Science in Action: Procrastination (results)

It worked. This became:

My kitchen table a little later

The clearing took about 40 minutes of work and three games of Sudoku. Now to test the broken-windows theory of neatness, which says that things stay decent (say, a few items on a table) so long as the disorder stays below a certain threshold. Below that threshold, a natural tendency keeps things neat. Above that threshold, it malfunctions.

Science in Action: Procrastination

A month ago I had lunch with Greg Niemeyer, a professor of art at UC Berkeley whose medium is games. His games have appeared in art galleries all over the world. He asked me if games had been studied by psychologists and pointed out some of their psychological properties — the power to make you concentrate for a long time, for example.

This was fascinating. He was so right — games are powerful in several ways. I wondered how that power could be (a) studied and (b) used. My first question was whether games could be a stimulant, like caffeine. I emailed Greg about this; he suggested I try Bejeweled and Sudoku. But I found them tiring — they require concentration. My next idea was that maybe I could use games as a reward. I used to enjoy Tetris and Freecell. If I do X (something I wouldn’t otherwise do), then I get to play a game. This contingency causes me to do X. There are dozens of rewards you could use this way (listening to music, eating a piece of chocolate, etc.); the advantages of games include their number and variety, the care put into them, the lack of satiation (you can play the game many times and it remains pleasant), their harmlessness (if I avoided getting addicted), their low cost, the ready supply (you can play a computer game whenever you have a computer), and the short duration of some of them. The reward for a 5-minute task should not last 4 hours.

I have wondered for a long time about procrastination — what causes it, what to do about it. I like to think I’ve figured out a few things but even so certain things I should do seem to go undone . . . well, forever.

For example, a month ago I had 40-odd emails in my inbox, some a few months old. I never got around to clearing it out. Bejeweled was no fun but Sudoku (Easy level) was okay. I never played Sudoku for fun but it was slightly enjoyable. Maybe I could play a game of Sudoku as reward for answering email. If I made the requirement — the amount of email that I needed to answer — small enough, it might work.

It worked. When I made the requirement tiny — deal with 3 email (which might take 10 minutes) — that was small enough. And I was able to do it again and again: handle 3 email, play Sudoku, handle 3 email, play Sudoku, etc. Progress was slow — I spent more time playing Sudoku than dealing with email — but slow progress was far better than no progress. I was a little stunned it was actually working. After about 10 cycles (which took 3 or 4 hours), my inbox was as empty as I could make it. It hadn’t been that empty in years. To gather some data about the whole process I wrote some R programs for recording what the task was, how long it took, etc.

Then I started spending all my time revising The Shangri-La Diet for the paperback edition. A few days ago I finished that. My inbox had gotten full again and again I used Sudoku to clear it out.

I want to learn more about this way of getting things done. Does it work with other chores besides email? Here is the kitchen table in my apartment:

My Kitchen Table 26 December 2006 8 am

It isn’t usually this messy but it hasn’t been completely clear for years. Can I use Sudoku to clear it off?

Why I Like Self-Experimentation

Self-experimentation, like blogs, Wikipedia, and open-source software (and before them, books) gives outsiders far more power. This took me a long time to figure out. For years, I liked self-experimentation for five reasons:

1. It worked. It reduced my acne, improved my sleep, and enabled me to lose plenty of weight. This surprised me. I am a professional scientist. My professional experiments, about animal learning, generally worked, but never had practical value.

2. It had unexpected benefits. I discovered accidentally that seeing faces in the morning improved my mood the next day. Better sleep (from self-experimentation) improved my health.

3. It was easy. What I did never involved more than small changes in my life. Even standing 8 hours per day wasn’t hard, after a few days.

4. My conclusions fit what others had found — usually, facts that didn’t fit mainstream views. For example, the fact that depression is often worst in the morning and gets better throughout the day doesn’t fit the conventional view that depression is a biochemical disorder but does fit my idea that depression is often due to a malfunctioning circadian oscillator. Self-experimentation seemed to be pointing me in correct directions.

5. My conclusions were surprising. That breakfast is bad (for sleep), the effect of faces on mood, and the Shangri-La Diet are examples.

Recently, though, the rise of blogging, Wikipedia, and open-source software, showed me the power of a kind of multiplicative force: (pleasure of hobbies) multiplied by (professional skills). Blogging, for example: (people enjoy writing) multiplied by (professional expertise, which gives them something interesting and unusual to say). In other words, expertise and job skills used in a hobby-like way. My self-experimentation, I realized, was another example: I used my professional (scientific) skills to solve everyday problems. My self-experimentation was like a hobby in that I did it year after year without financial reward or recognition. It was its own reward. The hobby aspect — persistence, freedom to try anything, no need for recognition or payment — made it powerful. I could go in depth where professionals couldn’t go at all.

But I was still missing something — something obvious to many others. The power of blogging isn’t

(hobby) x (job skills).

That’s just one person. The total power of blogging is

(hobby) x (job skills) x (anyone can do it)

Which is very powerful. Finally I saw there was a sixth reason to like self-experimentation:

6. Anyone can do it.

As Aaron Swartz Continue reading “Why I Like Self-Experimentation”

Books Were the First Open-Source Software

Here is Aaron Swartz on Wikipedia:

When you put it all together, the story becomes clear: an outsider makes one edit to add a chunk of information [to a Wikipedia entry], then insiders make several edits tweaking and reformatting it. In addition, insiders rack up thousands of edits doing things like changing the name of a category across the entire site — the kind of thing only insiders deeply care about. As a result, insiders account for the vast majority of the edits. But it’s the outsiders who provide nearly all of the content.

(Correcting Wikipedia’s founder, by the way.) When I visited my editor, Marian Lizzi, at Penguin, I realized that book publishing is exactly the same: Outsiders write the books, insiders edit them.

The curious thing about book publishing is similar to what Swartz noticed in a different realm: The content, the crucial stuff, is entirely from amateurs. No other industry, with the possible exception of craft shows, is like this. If I run a deli, I buy supplies and food from people who make their living selling supplies and food. If I make clothes, I buy my cloth from professional cloth makers. If I make cheese, my milk comes from professional farmers. Only book publishers endlessly deal with amateurs.

continued

The Wisdom of Experts: John Chambers on Research Design

John Chambers, a retired Bell Labs statistician and one of the persons most responsible for R, the free open-source data analysis package I use, told me an interesting story yesterday. AT&T used to make microchips. The “yield” of chips — the percent of chips that were defect-free — was very important. Chambers and other Bell Labs statisticians were asked to help the chip makers improve their manufacturing process by increasing the yield. At the chip factory, the people Chambers and his colleagues spoke to were chemists and engineers. They wanted to do experiments that varied voltage, temperature, and similar variables. Chambers and his colleagues had a hunch that the operator — the person running the fabrication machines — was important, and this turned out to be true.

I like this story because it has a wisdom-of-crowds-but-not-exactly twist: the supposed experts at one thing (data analysis) turned out to have useful (and unpredictable) knowledge about something else. We don’t think of statisticians as experts in human behavior but in this case they were at least more expert than the chemists and engineers. I mean: who were the experts here? And when we deal with someone, which is more likely: We overestimate how much they can help us with our problem? Or we underestimate (as in this story, where the chip makers underestimated the statisticians)? And if we have no idea which it is, how might we find out?

I told Chambers that statisticians were hurt by the name of their department: statistics. It puts them in too-small a box. John Tukey’s term data analysis (in place of statistics) was an improvement, yes, but only a bit; it would be a lot better if they were called how-to-do-research departments. Yes, Chambers said, that would be an improvement.

I am fascinated by the similarity between three things:

1. Data analysis. Much of data analysis consists of putting data together in a way that allows you to extract a little bit of information from each datum. These little piece of information, added together, can be quite informative. A scatterplot, for example.

2. Wisdom-of-crowds phenomena. For example, many people guess the weight of a cow. The average of their guesses is remarkably accurate, even though the variation in guesses is large.

3. Self-experimentation. The new and interesting feature of my self-experimentation was that it involved my everyday life. From activities I was going to do anyway (such as eat and sleep), I managed to extract useful information.

In each case it’s like extracting gold from seawater: You get something of value from what seemed useless. Are there other examples? How can we find new examples? Chamber’s story suggests one direction: Making some small change so that you learn from your co-workers about stuff you wouldn’t think they could teach you about.

Too Few Riders, Too Many Stolen Bases

I heard two excellent talks last week. Bent Flyvbjerg, a professor of Planning at Aalborg University, Aalborg, Denmark , spoke on “Survival of the Unfittest: Why the Worst Megaprojects [subways, airports, bridges, tunnels] Get Built.” Why? Because of false claims. Cost estimates turn out to be much too low and benefit estimates (such as ridership) much too high. Boston’s Big Dig, for example, has already cost more than three times the original estimate. Cost estimates were too low in 90% of projects, Flyvbjerg said. The tools used to make those estimates have supposedly improved a great deal over the last few decades but their accuracy has not improved. Lovallo and Kahneman have argued that the underlying problem is “optimism bias“; however, Flyvbjerg believes that the problem is what he now calls strategic misrepresentation — when he used the term lying people got upset. The greater the misrepresentation, the more likely the project would be approved — or rather the greater the truth the more likely the project would not be approved. That is a different kind of bias. An everyday example is me and my microwave oven. Sometimes I use my microwave oven to dry my clothes. I’ve done this dozens of times but I continue to badly underestimate how long it will take. I guess that a shirt will take 8 minutes to dry; it takes 15 minutes. I know I underestimate — but I keep doing it. This is not optimism bias. Microwaving is not unexpectedly difficult or unpredictable. The problem, I think, is the asymmetry of the effects of error. If my guess is too short, I have to put the shirt back in the microwave, which is inconvenient; if my guess is too long the shirt may burn — which corresponds to the project not being approved.

Incidentally, Flyvjberg has written a paper defending case studies and by extension self-experimentation. He quotes Hans Eysenck, who originally dismissed case studies as anecdotes: “Sometimes we simply have to keep our eyes open and look carefully at individual cases — not in the hope of proving anything but rather in the hope of learning something.” Exactly.

The other excellent talk (“Scagnostics” — scatterplot diagnostics) was by Leland Wilkinson, author of The Grammar of Graphics and developer of SYSTAT, who now works at SPSS. He described a system that classifies scatterplots. If you have twenty or thirty measures on each of several hundred people or cities or whatever, how do you make sense of it? Wilkinson’s algorithms measure such properties of a scatterplot as its texture, clumpiness, skewness, and four others I don’t remember. You use these measures to find the most interesting scatterplots. He illustrated the system with a set of baseball statistics — many measurements made on each of several hundred major-league baseball players. The scatterplot with the most outliers was stolen bases versus age. Stolen bases generally decline with age but there are many outliers. Although a vast number of statistical procedures assume normal distributions, Wilkinson’s tools revealed normality to be a kind of outlier. In the baseball dataset, only one scatterplot had both variables normally distributed: height versus weight. These tools may eventually be available with R.

Brain Food (part 9: supporting data, and a problem)

I reduced the amount of omega-3 in my diet. I stopped taking flax-seed oil capsules (I had been taking 10 1000-mg capsules/day) and started drinking extra light olive oil (2 tablespoons/day) instead of walnut oil. I made the change at midnight: Tuesday high, Wednesday low. The graph below shows measurements of my balance.

From Saturday through Tuesday, and preceding days, my intake of omega-3 was high; on Wednesday and Thursday it was low.

My balance was worse Wednesday morning than expected by extrapolation, which supports the idea I started with: omega-3 affects my balance. The time course of the change (the impairment was clear in hours) resembles the original observation: I could put on my shoes while standing much more easily the morning after the day I increased my omega-3 consumption.

But, as you can see, there was a problem: My balance rapidly improved during the low omega-3 condition. Although the results support my original idea, they don’t support it as strongly as they might. A comment on a previous post was “Aren’t you worried that your expectation of worse balance will skew the results?” No, I’m not I thought when I read it. I had several reasons for not worrying about the effect of expectations, and now another has come along: Surprising results, which imply that expectations have little effect. I did not expect significant improvement from practice. I had believed that because I balance everyday for hours while standing and walking, there would not be a large practice effect. I was wrong.

Psychologists don’t know much about motor learning. There are few well-established empirical generalizations about what makes motor learning faster or slower. Another gap in our knowledge is about the nature of the underlying change. When you get better with practice, how does your brain change?

After I shifted to low omega-3, I was surprised not only by how much I improved but also by how quickly. Was my improvement due simply to more tests? I plotted my scores versus test number:

This graph suggests that I improved more per test (greater slope) during the low-omega-3 condition than during the high-omega-3 condition. I think it is a spacing effect: During the low-omega-3 condition, I tested more often. During the high-omega-3 condition, I did 14 tests in 3.5 days — 4.0/day. During the low-omega-3 condition, I did 11 tests in 1.2 days — 9.1/day. I tested more often because I wanted to track the decrease. I think this difference in test rate is the reason for the slope difference. This effect is the opposite of the usual spacing effect in learning experiments, in which close-together (“massed”) practice is less effective than widely-spaced practice.

Relevant to the theme of inspiration via self-experiment, these results and my experience gave me several new (at least to me) ideas about motor learning. One was the existence of this spacing effect. Another was that practice changes the brain by increasing how much of the brain is devoted to the task. (The areas used for other tasks shrink.) Practice increases accuracy because more neurons become involved. The output, the action, is an average from a larger sample. One reason I thought of this is that after lots of practice, and I became quite accurate, the circular area on which I was balancing seemed larger. The notion that the brain area used by the task gets larger helps explain the spacing effect. Spacing is important because the brain doesn’t care how often you have done something in the distant past; what matters is how often you are doing it now. Thus the spacing effect helps make efficient use of scarce resources (neurons). The spacing effect occurs because neural activity causes an increase in something (call it X) that slowly fades away. If later activity happens while X is above a threshold, neural rewiring occurs.

The big practice effects and the idea that practice is more powerful when more frequent should interest anyone who wants to improve their balance (and probably other motor skills), from athletes to the elderly. In a simple cheap easy safe way I got better quickly–too quickly, actually. What happened reminds me of Little League: My batting got much better when I started swinging a bat in my backyard.

The lesson for my experimental design is that I should reduce and keep more constant how often I test.

Brain Food (part 8: a little more baseline)

As I mentioned earlier, while measuring my balance I’ve been listening to a book called Cod: The Fish that Changed the World. Around Hour 4 of the book I realized it was related to what I was doing: fish, brain food. Duh!

Each test of balance consists of 5 warmup trials followed by 15 regular trials. Each trial generates one number, a duration: how long I stand on one foot before the other foot touches the floor. It’s is a bit like surfing–balance, balance, balance, balance, balance, wipe out. (Surfers, skateboarders, skiers, snowboarders, gymnasts . . . this may interest you.) I enter the stopwatch times directly into my laptop. Each test lasts about 12 minutes. Because of the book, they’re pleasant.

I made several more baseline measurements of my balance with two changes:

1. To reduce fluctuations in the concentration of omega-3 in my brain, I did my best to take the flaxseed oil capsules as evenly spaced as possible. The general rule was to take 1 every 2.4 hours (= 10 per day). I didn’t take the capsules with me when I left home but I did follow that rule when I was home (not waking up to take them, however).

2. To make the distribution of (log) balance times more Gaussian (normal), I raised the maximum possible time from 30 seconds to 60 seconds. Previously I had stopped the test at 30 seconds; now the cutoff was 60 seconds. The problem was 30 seconds was too common — my balance was too good. Before the change, 3% of baseline measurements (6 out of 210) were 30 seconds. After the change, 12% of measurements (25 out of 210) were between 30 and 60 seconds and <1% (1 out of 210) were 60 seconds. The graph below shows results (mean & standard error) for 28 sessions.
The early problem (first 10 tests), discussed in my previous post, was that the means were fluctuating too much. A one-way ANOVA, with each test a different level, gave F(9, 140) = 2.6, p = 0.008. This is why I started trying to evenly distribute the flax capsules over the day. This seemed to work. For the last 18 tests, F(17, 252) = 1.0, p = 0.4. Unfortunately there is obviously an upward trend but that is okay because the change I am going to make — much less omega-3 — should if anything impair balance.

Brain Food (part 7: looking for a steady baseline)

Thanks a lot to those who commented on my previous post, very helpful comments. Barleyblair said that after greatly increasing her omega-3 intake she too found her balance greatly improved — not only could she put her socks on while standing she could put her shoes on while standing, which she hadn’t even dreamed of being able to do. Bekel said her sleep is deep and restful because of flaxseed oil. Pauls referred me to a Real-Age test of balance where you stand on one foot with your eyes closed. I tried it. It was way too easy: After two minute I opened my eyes and stopped the test. The table that tells you what the results means only goes up to 28 seconds. If the table is not completely bogus, then my balance is much better than average. Which is consistent with my working hypotheses that (a) the average American gets far too little omega-3 and (b) my brain function — indexed by my ability to balance — greatly improved when I increased my omega-3 intake. Keep in mind that according to conventional recommendations I ate plenty of fish (several servings per week) before increasing my omega-3 intake.

Before doing a simple test of the effects of omega-3 on my balance, I would like to establish a steady baseline and get an idea of what normal variation is. If possible, I would like to reduce normal variation — reduce background noise, in other words. With this goal I have measured my balance 13 times under roughly the same conditions: barefoot, listening to a book (a fascinating book, by the way: Cod: A Biography of the Fish that Changed the World by Mark Kurlansky) while doing the test, 20 trials per test. Each trial consists of standing on one foot on the cutting board on the 0.5-inch platform (see equipment here) and measuring how long until my other foot touches the ground. Each test takes about 10 minutes. I like the book so I enjoy the tests.
Below are the results from all 13 tests as a function of trial number. They show that there is a warmup period lasting 5 trials.

That just refines warmup measurements I posted previously. This is completely new:

The x axis shows when the test was done; points that are close together on the x axis were done close together in time — e.g., an hour apart. I hoped for a steady baseline so that I could go on to more interesting stuff. That is not what I found. I did a one-factor F test to see if there was significant heterogeniety. I used only the last 15 trials of each test, dropping the first 5 “warmup” trials. There were 13 levels (the 13 tests) of one factor. There was a highly reliable (p = .003) effect of test, meaning the variation from one test to the next was too large to be sampling error. And this test did not take into account the obvious clustering — tests close in time had similar results. The clustering makes it even more likely there were real differences in balancing ability from one test (or rather cluster of tests) to the next.

Apparently my balancing ability can change substantially in several hours! (For example, the time between the last test and the next-to-last test, the last in a cluster of three, was 7 hours.) And my test is sensitive enough to detect this! Forgive the exclamation marks. Nothing in my knowledge of psychology makes it obvious or even likely that this would be true — that a measure of quality of brain function would vary so much in hours that it could be detected by single measurements. Or that single measurements would be precise enough to detect such a change. Of course brain function (e.g., alertness) may get worse as you get sleepy but in this case my balance was much better in the evening than in the morning. The differences in my scores had no correlate that I could notice — I didn’t feel noticeably different when I did worse than when I did better.

What might be causing the differences? Body temperature or other circadian rhythm: Unlikely, because one would expect best performance when body temperature is highest, around 4 pm, which does not fit the results very well. More plausible: blood concentration of omega-3. It will be relatively low in the morning because while I was asleep I took no flaxseed oil or walnut oil. It will rise during the day as I consume these. This is consistent with the high measurements in the early evening.

Whatever the cause, these data suggest that something in ordinary life (which includes omega-3 consumption) can improve brain function within hours. If you, dear reader, know of other data that suggests this conclusion please let me know. Drugs and alcohol can quickly change brain function but they are not involved here. Nor am I listening to music, also believed to improve brain function (slightly). I am going to try to reduce fluctuations in omega-3 blood levels and see if I get more uniform measurements. I had a cup of tea with caffeine this afternoon; caffeine consumption is something else I will better control (by eliminating it).

Brain Food (part 6: a little more progress)

I did two balance experiments with a warmup of 8 trials. In one, the order of feet (which foot I stood on) was left, then right; in the other, right, then left. In both experiments I did much better (i.e., balanced longer) on my right foot than my left foot, ps < 0.001. This surprised me; I had never heard of such an asymmetry. The difference was so large that the platform size (0.75 inch) good for the left foot was too easy for the right foot. To make things as simple and easy as possible I decided to stop testing both feet and to only measure balancing on my right foot (and to use a 0.5-inch platform to make it more difficult and avoid a ceiling effect). I tested my balance (a) in silence and (b) listening to a book. The results were similar so I decided the standard condition will be listening to something. I want to make my balance test fast and pleasant. I came across several promising related facts: 1. On the Shangri-La Diet (SLD) forums, spacehoppa said she felt “solid on [her] feet” — which may mean her balance has improved. If so, the improved balance that I noticed may be widely true. She also said “my mind feels clearer,” another effect I noticed from omega-3’s, and more reason to think omega-3 improve brain function.

2. On the SLD forums, porkypine wrote, “I have a very strong reaction to the 1500 mg of OmegaBrite that I have begun taking in the morning. . . . During the day, I am not just happier, but actually chipper, which is not a normal state for me. I have wondered if I am getting too much Omega-3.” This supports one of the assumptions behind my upcoming tests of the effects of omega-3 on balance: the effects of omega-3 on the brain happen quickly. It also highlights an advantage of measuring balance rather than something else, such as mood — namely, it is reasonable to assume that the better your balance, the better your brain is working. As this quote shows, the mapping between mood and goodness of functioning is not so clear.

3. In a book about neurology (Defending the Cavewoman by Harold Klawans), including Creutzfeldt-Jacob disease, I read: “A [Fore] woman in late pregnancy who was unable to walk easily across a narrow tree trunk bridging a gorge knew from that change in her balance that she had kuru and that she would die of it. The physicians examined her and thought she was normal, but in less than one year, she was dead.” This shows that balance is an especially sensitive measure of brain function, at least under demanding conditions. It’s relatively easy to notice worse balance.

Balance is also much easier to quantify than many other measures of brain function, such as mental clarity.

Brain Food (part 5: a little progress)

I’ve been doing small experiments on my balance to learn what affects it. Most research using new tools follows a progression. Step 1: you learn what people already knew. Step 2: you find new information that isn’t very interesting. Step 3: you find interesting new information. Earlier I found that I could balance on one foot longer on a wider platform — Step 1.

Now Step 2. I’ve done a few experiments comparing different footwear (sandals, shoes, barefoot). In each experiment I ran several conditions, each consisting of 12 trials standing on my left foot followed by 12 trials standing on my right foot. These trials had gaps of seconds between them. Different conditions (different footwear) were separated by at least 10 minutes and usually more.

The right-foot average was always more than the left-foot average. You can see examples of this in my earlier results. I doubt that the right foot/leg is actually better than the left so this suggests there is a substantial warmup effect, as there is in most tasks.

To make measurements more precise, it would help to have a warmup period before collecting the main, more stable data. How long should it be? The graph below shows data from many of the conditions I have run arranged by trial number, with a lowess summary line.

The y axis is in log seconds, not seconds; I used a log transform to make the distribution of the data more symmetrical. The maximum time was 30 seconds. (Log(30) = 3.4.) If I kept my balance for 30 seconds, I stopped, and recorded the result as 30 seconds.

The graph shows an early warmup period that lasts 6-8 trials long, followed by a slow improvement that lasts at least 24 trials. Here is something new and not very interesting: details about the warmup effect.

Brain Food (part 4: measuring balance)

Why is now a great time to be alive? Because Philip Weiss, one of my favorite writers, has a blog. Today’s entry mentioned a story about teaching the Torah while standing on one foot.

Speaking of standing on one foot . . . I devised a way to measure my balance. (To recap: I want to measure my balance to see if omega-3 improves it. When I increased my omega-3 consumption via walnut oil and flaxseed oil, it suddenly became much easier to put on my shoes while standing, which I’d been doing for years. The omega-3 also improved my sleep. Maybe omega-3 makes much of the human brain work better, especially the most-recently-evolved portions. Maybe this effect happens within hours.)

Here is the method. Equipment. At a hardware store I bought a series of 6 pipe caps, caps for 0.5 inch pipe, 0.75 inch pipe, 1.0 inch pipe, 1.25 inch pipe, 1.5 inch pipe, and 2.0 inch pipe (total $24). At a new-age pharmacy I bought a thick foot-sized cutting board (made of bamboo, $15). Below is a picture of these items and my stopwatch, which measures times to 0.01 second. Procedure. I put the board on one of the caps and balance on the board on one foot. I measure with a stopwatch how long I can balance on it before putting the other foot down. After 30 seconds, the trial stops — 30 seconds is the maximum possible score. I stand on my left foot for several trials (e.g., 12), then switch to my right foot for several trials.

The reason for six different caps — six different platforms — is to be able to adjust the difficulty so that it is neither too easy nor too hard — if either were the case the measurements wouldn’t be telling me much. With a little trial and error, the 0.75-inch cap seemed to be best. Below is data from that cap and the smaller and larger caps. With each foot I balanced 12 times; the graph shows the means and standard errors on a log scale. The sequence of conditions was: (1) 0.75-inch cap, (2) 0.5-inch cap, (3) 1.0-inch cap, (4) 0.75-inch cap. I balanced on each foot 12 times in each of the 4 conditions.

The results make sense: the smaller the platform, the less time I could balance on it. There appears to be a practice effect — better scores with more practice. I hope with more experience this effect will go away. The next step is to do these measurements several times per day for several days so that I can get some idea of how much they vary “naturally” — what the background variation is.

Brain Food (part 2)

Do omega-3 fatty acids improve brain function? I blogged earlier that switching from olive oil (low omega-3) to walnut oil (high omega-3) and flaxseed-oil capsules (very high omega-3) caused my sleep, my balance, and maybe my mood to improve. If you are interested in duplicating what I did, here are details:

Supplies. I take (a) 2 tablespoons/day walnut oil (Spectrum Organic refined). Store locator at www.spectrumorganics.com will help you locate this. Total 240 calories. (b) 10 1000-mg capsules/day of flaxseed oil (Longs cold-pressed softgels). Longs drugstore house brand, which is only available at Longs drugstores. Total 100 calories. I store both in the refrigerator but they are in stores at room temperature (reasonably enough, since walnut trees and flax plants live at room temperature). Procedure. I take both between meals. I divide the walnut oil into 2 doses of 1 T each that I take at least several hours apart. I take 80% of this stuff after noon. I spread the flaxseed capsules out throughout the day, take about 3 at a time. But read on for more helpful info — you may not want to start with exact duplication.

With the new oils, my sleep was consistently and unusually good for about two weeks, making it was clear that the improvement was caused by the new oils (or more precisely, the difference between the new oils and the oil they replaced). Less clear was what aspect of the dietary change made the difference. I switched to walnut oil and flaxseed oil because they were high in omega-3; but they differ from olive oil in other ways as well.

It would be great to know more — both to maximize the effect on myself and to help others get the effect. The wonderful thing about finding a food component that improves sleep — if that isn’t wonderful enough — is that it is likely to improve the brain in all sorts of other ways, too. (In contrast to my previous sleep research on the effects of non-food-components, such as standing and breakfast, where the improvements were probably specific to sleep.) The data about omega-3 support this view: A wide range of improvements in mental function have been observed. Assuming omega-3 causes a single change in the brain, that change causes (a) a reduced rate of Alzheimer’s, (b) less depression, and (c) better sleep — so it is likely to be widespread in the brain.

Since my earlier post, I’ve gathered some new and helpful data.

First, a Shangri-La-Diet forum poll found that most people who used olive oil for the diet had better sleep (10 out of 12), even though olive oil is relatively low in omega-3. Can even a small amount of omega-3 improve sleep? (Small compared to my current dose. SLD dieters consume large amounts of olive oil compared to everyone else.) Or is some other component of olive oil causing the change?

Second, after reading my earlier post, Catherine Johnson remembered that “I realize that I started sleeping miserably when I stopped taking Omega 3s.”
I trust that sort of thing. I had had a similar now-I-understand experience. After figuring out that lots of standing improves sleep, I remembered that several years earlier I had sleep very well the night after visiting lots of art studios during an Open Studios day. At the time I had guessed that it was all the art-inspired thinking that had caused my much-better-than-average sleep. But it was also a day with much more standing than usual.

Third, I reduced my flaxseed-oil intake by half: I took 5 capsules instead of 10. To my great surprise, I woke feeling as I felt with the olive oil. I hadn’t felt that way in weeks. The next day I went back to 10 capsules and again woke up feeling great. Obviously this strengthens the plausibility of omega-3 –> better sleep because the crucial ingredient is apparently in high quantities in the flaxseed oil capsules.

The stunning thing, the reason I was so surprised, is this: I didn’t expect the flaxseed change to make a difference so quickly. When someone ate a zero-folate diet to learn about the effects of folate, it took months for the effects to become clear. Although I had noticed the sleep improvement caused by the new oils the very next morning, I had assumed that was because I was quite deficient — like someone with scurvy noticing fast improvement with Vitamin C. Someone who is not Vitamin-C-deficient will have to go without Vitamin C for months before scurvy occurs. I had expected to wait weeks before seeing sleep degradation.

If you read about why omega-3 is important, you will read endlessly that our brains are made of it — the fraction of our brain that is omega-3 fatty acids is 10% (Wikipedia?), 60% (a Whole Foods employee), whatever. That is what I had assumed: that omega-3 is a structural element of our brains. Which is no doubt true. I have never heard that it is a metabolic element of our brains. Cars are “made of” carburetors, fan belts, computers, tires, and the like (structual elements); they “run on” gasoline and electricity (metabolic elements). Structural elements are parts. Metabolic elements are fuel. Failure to replace a perfectly good carburetor or other structual element will eventually cause trouble, but it may be several years. Failure to replace gasoline or electricity will cause trouble much sooner. Thus my little experiment suggested that omega-3 was a metabolic element.

If an effect can be turned on and off quickly it is much easier to study than if it takes weeks or months to turn on or off. Upcoming attractions: How I am studying it.

Brain Food

On the Shangri-la diet forums, many dieters have reported better sleep. (“Woke up feeling like I could fight tigers. Have not felt this way since 2003. . . . I would stay on this method just for the sleep benefits,” wrote bekel.) To learn how widespread this was, I did a poll. Forty-two people answered. Two-thirds of them reported better sleep (half “much better” sleep, half “slightly better” sleep). Only one-tenth of them reported worse sleep (all “slightly worse”, none “much worse”). Almost all of them were doing SLD with oil, implying that the improvement was due to a few tablespoons of oil per day.

This was exciting. A small, almost trivial dietary change seemed to be causing a big important improvement. I had switched from sugar water to ELOO about three years ago and had not noticed any sleep improvement. Perhaps this was because the improvement is due to omega-3 fatty acids, of which ELOO has much less than other oils. And because I ate a few servings of fatty fish (such as salmon) per week, I might have been less omega-3 deficient than most. Thinking about the poll results, I remembered I had slept unusually well about a week or so earlier. At roughly the same time, for reasons I can’t remember, I had taken six or seven flax-oil capsules. This vague correlation was curious. It raised the possibility that a large dose of omega-3’s might have a noticeable effect.

To test this idea, I made two changes: (a) I started drinking 2 tablespoons/day of walnut oil. Walnut oil (12% omega-3) is a much better source than olive oil (1%) or canola oil (7%). (b) I started taking 10 flax-oil capsules/day (= 100 calories/day). Flax oil (58% omega-3) is an especially good source. (I drank Spectrum refined walnut oil, which has little flavor, and I mixed it with water to reduce its flavor. Another walnut oil I have tried, International Collection, has a strong walnut flavor.)

It seems to make a difference. Three differences, actually: (a) Better sleep. I wake up more clear-headed, less foggy. (b) Better mood. My overall mood is slightly better, in a hard-to-describe way. (c) Better balance. For the last two years, I have often put on and taken off my shoe-laced shoes while standing; even after two years of practice there was plenty of room for improvement. Suddenly this became much easier. All three changes began the day after the dietary change (about a week ago) and since then have not only persisted but if anything have gotten stronger.

Do these bits of data — survey and self-experimentation — mean anything? I think so. Consider other facts:

1. SLD dieters using oil report many other improvements that seem unrelated to less hunger or weight loss. Most of them fall into three groups: (a) Skin. Everyone reports softer skin. In addition, spacehoppa’s eczema and keratosis pilaris (permanent gooseflesh) got much better “It’s like I’m correcting a major nutritional deficiency,” she wrote. Shrinkingbean found her eczema improved after only 10 days. CarolS‘s acne has gotten much better. (2) Mood. Easier to give up smoking and coffee. More libido. (3) Stiffness. “I have been a person who gets stiff when sitting too long, ever since I was in high school. . . . Sitting in one place for 15 minutes would cause me to stand up from the chair like a 90 year old. . . . It just dawned on me that that is no longer true!!!!” wrote Ann. Two others noticed similar effects.

2. Several studies of patients with mood disorders have found their symptoms improved when they were given fish oil (high in omega-3) compared to a placebo group. A review of these and similar studies notes that “the marine-based omega-3 fatty acids primarily consist of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and appear to be highly biologically active. In contrast, those from plants (flaxseed, walnuts, and canola oil) are usually in the form of the parent omega-3 fatty acid, alpha-linolenic acid. Although dietary alpha-linolenic acid can be endogenously converted to EPA and DHA . . . research suggests that this occurs inefficiently to only 10%-15%.”

3. Several surveys of the elderly have found an association between (a) reduced risk of Alzheimer’s disease and less cognitive decline and (b) greater fish consumption. At the other end of life, omega-3 fatty acids are necessary for proper development of our brains, a point made here. The effect of an essential nutrient is likely to be clearest in those who are most vulnerable (such as babies, the elderly, and the mentally ill).

What makes the overall idea — we need more omega-3 than most of us get — even more plausible is that a pre-existing theory makes sense of these facts. That theory is the aquatic-ape hypothesis, the idea that humans became big-brained primates while living near water and eating lots of fish. In 2005, Sir David Attenborough, whose nature documentaries I love, made a fascinating radio show about this theory. The end of the show provides new supporting data that I find especially persuasive.

If our brains grew big while eating lots of fish, it makes perfect sense that they would work better when we eat lots of fish. More precisely, too little fish (or too little of fish’s crucial nutrients) should harm the portions of our body that evolved during that period (shaped to work well on a high-fish diet) much more than older portions (shaped to work well on a low-fish diet). The improvements associated with omega-3 fatty acids — reduction of cognitive decline in the elderly, mood improvements in the mentally ill — fit that prediction well. So does the conclusion of a recent meta-analysis that omega-3 does not clearly reduce heart disease or cancer.

And so do the benefits of oil (presumably from omega-3) suggested by the SLD forums and my self-experimentation. Sleep: My earlier self-experimentation suggested that sleep is influenced by morning conversations and amount of standing, implying considerable differences between our sleep and the sleep of other primates. Skin: Human skin has fat attached, like marine mammals but unlike the skin of other primates. (This fact inspired Alistar Hardy to think of the aquatic ape hypothesis.) In addition, we have much less hair than other primates. Stiffness when standing up and balance on one foot: Unlike other primates, we are bipedal.

How to measure my sense of balance? . . .

A Little Bit of Paris

Yesterday was an little milestone. The SLD was so easy and fun that I did it too much. I couldn’t eat my one meal of the day. Part of my brain said: You really should eat something, if anything you’re too thin. Like a parent to a child. But I didn’t. (And woke up this morning not hungry at all.) Was I testing the power of the SLD and went a little too far? No: it was an accident. Which is why it is interesting.

This has never happened before. I discovered the basic idea of the SLD and got down to my current weight six years ago. Since then I have eaten one meal per day, including any number of meals I could have easily skipped. The thing is: I didn’t skip them. The part of my brain that said eat even when I wasn’t hungry was powerful enough to overcome my lack of hunger. Yesterday, for the first time, it wasn’t. It reminded me of being unable to eat in Paris, which led to my discovery of the SLD.

After six years, why now? Because of the SLD forums. In two months they have injected enough new ideas into the diet (e.g., take oil with water, oil improves sleep, crazy spicing is worth pursuing) to make it too much fun. (For me.) Hard to believe, I agree. Here is what I ate yesterday:

1. Early in the morning, a cup of tea (unfamiliar flavor) with one sugar cube. I’ve done this a thousand times. 15 calories.

2. A few sticks of gum. I’ve done this thousands of time. 0 calories.

3. Around 11 am I drank some walnut oil (Spectrum). I bought it a few days ago because of a forum post about its benefits. I drank 2 tablespoons of it with water — testing my friend Carl Willat’s suggestion that he drew from the forums. I don’t have trouble drinking oil but the oil/water mixture is even easier, a curious texture. This was slightly different than usual: I have been drinking 1-2 tablespoons oil/day for the last 3 years but (a) I have always drunk 1 T in the morning and 1 T later in the day, sometimes forgetting the second dose and (b) I have tried many different oils but not walnut oil because it has some flavor. The water seems to eliminate or greatly reduce the flavor. 240 calories. So far: 255 calories.

4. More gum. Thousands of times. 0 calories.

5. A few small pieces of excellent dark chocolate. Thousands of times. 50 calories? So far: 305 calories.

6. Small amounts of several cheeses. Thousands of times. 100 calories? So far: 405 calories.

7. Half a bottle (8 oz., whole bottle is 16 oz.) of Healing Springs Raw Watermelon Kambucha. An associated website (www.honeysweetdrinks.com) is non-functional. I almost never drink strange soft drinks because I’m afraid they will ruin my appetite, as they did in Paris six years ago. But in Paris I drank about two per day. This time I drank half a bottle — surely too little to matter, I thought. Such an interesting flavor, honey-sweetened. No indication of how many calories. 60 calories? So far: 465 calories.

8. Protein drink. Curious about tasteless protein drinks, I tried to follow a recipe from Sean Curley. My drink contained 1 tablespoon each of 3 different protein powders. To improve the taste I added one sugar cube, a package of Splenda, and some random spice blends. 75 calories. So far: 540 calories

9. 10 flax-oil capsules. A week or so ago I slept unusually well and somewhere around that time I had taken about 6 flax-oil capsules. Forum discussion led me to think the flax oil might be responsible. I took 10 capsules to see if I could repeat the experience. 100 calories. So far: 640 calories

10. Chai ice blend. To make swallowing the flax-oil capsules enjoyable I made a chai drink to wash them down. I blended together sugar-free chai mix, 4 oz. half-and-half, water, and ice. I’d had about 10 cups of this mix before. To make the flavor more interesting, I added a couple shakes of two random spice blends. 212 calories. So far: 852 calories.

At this point I decided I didn’t want dinner and took a long walk instead.

11. Two sugar-free chocolate-chip cookies. New-product sample left at my house. 100 calories. So far: 952 calories.

12. Two Emer’gen-C (vitamin) packets mixed with 3 tablespoons half-and-half. Makes a lovely mousse-like concoction. Vaguely-familiar flavor. 90 calories. So far: 1042 calories.

Total flavorless calories: 340. Total unfamiliar-flavor calories: 347. Whereas normal values would be roughly 240 flavorless calories and <100 unfamiliar-flavor calories. So I had at least doubled my usual intake of these hunger-suppressing foods. Not because I was trying to lose weight, though, but because of forum discussions, because I found combinations of random spice blends intriguing, and because I wondered if flax oil caused better sleep. Not a long-term healthy diet but v v filling and v v easy.

I woke up the next day having slept unusually well. For me, it was an unusual form of good sleep. Many times I have slept extremely well after standing 9 or 10 hours but in these cases I woke up feeling scrubbed clean of tiredness. In this case, however, I didn’t feel scrubbed clean of tiredness (and I hadn’t stood 9 or 10 hours) but my brain felt very clear when I awoke. I’d been drinking oil for years — this wasn’t produced by my usual oil intake. If it was cause and effect (oil caused better sleep), something found more in walnut oil and/or flax oil than in canola oil or ELOO or safflower oil or grapeseed oil (oils I had had many times in the past) was responsible.

Meal Skipping: Good or Bad?

Many people find that the Shangri-La diet makes it easy to skip meals. It is natural to ask: How does meal skipping affect overall health? Having eaten one meal per day for the last six years, let’s just say I care about the answer.

For more than half a century it has been clear that calorie restriction is a powerful way to increase the lifespan of rats and at least a few other species. An experiment with monkeys seems to be headed for the same result: calorie restriction increases lifespan.

Calorie restriction is a complex treatment. Calorie-restricted rats eat less, they lose weight, they may eat less often, they eat less protein, they eat less carbohydrate, and so on. Which of these changes cause the health benefits? A researcher at the National Institute of Aging named Mark Mattson has been asking this question. He and his co-workers have discovered that the benefits of calorie restriction can be achieved by eating less frequently, even when there is little or no weight loss. The implication is that skipping meals, if anything, is likely to be beneficial.

One study, published in 2003, compared four groups of mice. One group (ad lib) got all the food they wanted every day. Another group (calorie restriction) got 60% of the amount of food that the first group got. A third group (intermittent fed) got all the food it wanted but only every other day. A fourth group got the same overall amount of food as the intermittent-fed group, but without a one-day “fast” between feedings. After 20 weeks, the calorie-restriction mice weighed about half what the ad-lib mice weighed; the other two groups weighed about 90% of what the ad-lib mice weighed. The most interesting measure was what happened when kainic acid (which kills neurons) was injected into the brains of the mice. The measure was how many neurons survive. The results were not easy to completely sum up but they did show that intermittent feeding was more protective than ad lib feeding, and at least as protective as calorie restriction. In other research from Mattson’s lab, intermittent feeding has been found to be healthier than ad lib feeding in other ways — for example, a rat study found protection against heart-attack damage. A review article by Mattson concluded that “both caloric (energy) restriction (CR) and reduced meal frequency/intermittent fasting can suppress the development of various diseases and can increase life span in rodents.”

What about humans? In January I was contacted by Dr. James Johnson, Dr. Donald Laub, and Sujit John, who had been studying the effect of intermittent feeding on humans — starting with themselves. Johnson had tried to lose weight via an on-day-off-day diet: One day you eat normally, the next you eat 20% of what you would usually eat. I think he based this diet on Mattson’s results. Eating only every other day — the usual regime in Mattson’s experiments — was just too hard but Johnson found that eating a percentage on the order of 20-30% of usual intake on the off days was just bearable and did produce weight loss. Johnson found that not only did it produce weight loss, it had many other beneficial effects, such as an improvement in asthma symptoms. He first noticed these improvements when he tried the diet himself (he wanted to lose weight); later he saw similar improvements when his friends did the diet, the same path I followed with SLD. Johnson, Laub, and John have just published an article in Medical Hypotheses about their ideas. They were interested in my weight-loss ideas as a way of making the on-and-off regime more bearable — to reduce the hunger involved. “The oil and sugar water seem to work well,” Dr. Laub wrote me recently.

Here is the abstract of their Medical Hypotheses paper:

Restricting caloric intake to 60-70% of normal adult weight maintenance requirement prolongs lifespan 30-50% and confers near perfect health across a broad range of species. Every other day feeding produces similar effects in rodents, and profound beneficial physiologic changes have been demonstrated in the absence of weight loss in ob/ob mice. Since May 2003 we have experimented with alternate day calorie restriction, one day consuming 20-50% of estimated daily caloric requirement and the next day ad lib eating, and have observed health benefits starting in as little as 2 weeks, including insulin resistance, asthma, seasonal allergies, infectious diseases of viral, bacterial and fungal origin (viral URI, recurrent bacterial tonsillitis, chronic sinusitis, periodontal disease), autoimmune disorder (rheumatoid arthritis), osteoarthritis, symptoms due to CNS inflammatory lesions (Tourette’s, Meniere’s) cardiac arrhythmias (PVCs, atrial fibrillation), menopause related hot flashes. We hypothesize that other many conditions would be delayed, prevented or improved, including Alzheimer’s, Parkinson’s, multiple sclerosis, brain injury due to thrombotic stroke atherosclerosis, NIDDM, congestive heart failure.
Our hypothesis is supported by an article from 1957 in the Spanish medical literature which due to a translation error has been construed by several authors to be the only existing example of calorie restriction with good nutrition. We contend for reasons cited that there was no reduction in calories overall, but that the subjects were eating, on alternate days, either 900 calories or 2300 calories, averaging 1600, and that body weight was maintained. Thus they consumed either 56% or 144% of daily caloric requirement. The subjects were in a residence for old people, and all were in perfect health and over 65. Over three years, there were 6 deaths among 60 study subjects and 13 deaths among 60 ad lib-fed controls, non-significant difference. Study subjects were in hospital 123 days, controls 219, highly significant difference. We believe widespread use of this pattern of eating could impact influenza epidemics and other communicable diseases by improving resistance to infection. In addition to the health effects, this pattern of eating has proven to be a good method of weight control, and we are continuing to study the process in conjunction with the NIH.

Huh. My question is: Am I skipping enough meals?